Salta al contenuto principale

Introduzione

Apple ha introdotto i propri processori M1 Pro/Max nei 2021 MacBook Pro. Come cambia la configurazione della scheda logica con questi nuovi SoC proprietari? Guardate questa guida per scoprirlo!

Grazie al membro della nostra comunità C. Chin per questa guida!

Questo smontaggio non è una guida di riparazione. Per riparare il tuo MacBook Pro 14" 2021, usa il nostro manuale di assistenza.

  1. Identificazione chip MacBook Pro 14" 2021, Lato 1 della scheda principale: passo 1, immagine 1 di 2 Identificazione chip MacBook Pro 14" 2021, Lato 1 della scheda principale: passo 1, immagine 2 di 2
    • Identificazione IC, parte 1:

    • System-on-a-chip (SoC) Apple APL1103 M1 Pro

    • Memoria Samsung K3LKYKY0EM-ZGCP 8 GB LPDDR5 SDRAM (16 GB in totale)

    • Memoria NAND Flash Kioxia KICM225UZ0460 da 128 GB

    • Gestore dell'alimentazione Apple APL1098/343S00515

    • Gestore dell'alimentazione Apple 338S00600

    • Convertitore DisplayPort-to-HDMI Kinetic Technologies MCDP2920

    • Controller del lettore di schede Genesys Logic GL9755A

  2. Identificazione chip MacBook Pro 14" 2021: passo 2, immagine 1 di 1
    • Identificazione IC, parte 2:

    • Retimer Intel JHL8040R Thunderbolt 4

    • Memoria flash Serial NOR Macronix MX25U6472F da 64 Mb

    • Memoria flash Serial NOR Winbond W25Q80DVUXIE da 8 Mb

    • Convertitore step-down sincrono Renesas RAA225701C ?

    • Convertitore step-down sincrono Analog Devices LT86422

    • Convertitore step-down Texas Instruments TPS62130B

    • Convertitore boost Texas Instruments ELC180 (probabilmente)

  3. Identificazione chip MacBook Pro 14" 2021: passo 3, immagine 1 di 1
    • Identificazione IC, parte 3:

    • Protezione dalle sovratensioni Texas Instruments TVS2200

    • Interruttore di carico ON Semiconductor FPF2495CUCX

    • Interruttore di carico Texas Instruments (probabilmente)

    • Regolatore LDO ON Semiconductor NCV8160AMX500TBG 250 mA / 5.0 V

    • Traduttore livello di voltaggio/ricetrasmettitore Nexperia 74AVC2T45 Dual-Bit

    • Ricetrasmettitore Texas Instruments SN74AXC1T45 Single-Bit Bus

    • Buffer singolo Nexperia 74AUP1G07

  4. Identificazione chip MacBook Pro 14" 2021: passo 4, immagine 1 di 1
    • Identificazione IC, parte 4:

    • Traduttore multi-livello di voltaggio Texas Instruments LSF0102 a due canali

    • Traduttore multi-livello di voltaggio Nexperia LSF0101 1-Bit

    • Dual buffer Texas Instruments SN74AUP2G07

    • Buffer singolo Texas Instruments SN74LVC1G07

    • Trigger Schmitt Nexperia 74AUP1G17

    • Gate AND singolo Nexperia 74AUP1G08

  5. Identificazione chip MacBook Pro 14" 2021, Lato 2 della scheda principale: passo 5, immagine 1 di 2 Identificazione chip MacBook Pro 14" 2021, Lato 2 della scheda principale: passo 5, immagine 2 di 2
    • Identificazione IC, parte 1:

    • Memoria flash NAND Kioxia KICM225VF9081 da 128 GB

    • Modulo Bluetooth/WiFi USI 339S00912

    • Controller NFC con Secure Element NXP Semiconductor SN210V

    • Porta USB-C/controller dell'erogazione potenza Texas Instruments CD3217B12

    • Caricatore batteria agli ioni di litio Renesas ISL9240

    • Memoria flash Serial NOR Winbond W25Q80EWUXIE da 8 Mb

    • Memoria flash Serial NOR Winbond W25Q80DVUXIE da 8 Mb

  6. Identificazione chip MacBook Pro 14" 2021: passo 6, immagine 1 di 1
    • Identificazione IC, parte 2:

    • Controller Renesas Power Phase PWM

    • Codec audio Cirrus Logic CS42L84A

    • Amplificatore audio Texas Instruments SN012776B0

    • Convertitore step-down Texas Instruments TPS62130B

    • Regolatore Boost Renesas RAA209100 (probabilmente)

    • Driver LED retroilluminazione Texas Instruments LP4881

    • Ripetitore duplice USB 2.0 Texas Instruments TUSB2E22

  7. Identificazione chip MacBook Pro 14" 2021: passo 7, immagine 1 di 1
    • Identificazione IC, parte 3:

    • Amplificatore del sensore del voltaggio Texas Instruments INA190A3

    • Amplificatore del sensore del voltaggio Texas Instruments INA190A4

    • Amplificatore operativo input/output rail-to-rail Maxim Integrated MAX9620 da 1.5 MHz

    • Amplificatore operativo singolo ON Semiconductor NCS333ASQ3T2G

    • Gruppo segnali misti Dialog Semiconductor (probabilmente)

    • Expander I/O NXP Semiconductor PCAL6416A da 16-Bit

    • Interruttore analogico doppio SPST Analog Devices ADG1422BCPZ

  8. Identificazione chip MacBook Pro 14" 2021: passo 8, immagine 1 di 1
    • Identificazione IC, parte 4:

    • Riferimento di tensione Texas Instruments REF3325 da 2.5 V

    • Regolatore LDO Texas Instruments TLV75801P 500 mA / Adj.

    • Regolatore LDO Texas Instruments TLV75533P da 500 mA / 3.3 V

    • Regolatore LDO Texas Instruments LP5907SNX-3.0 da 250 mA / 3.0 V

    • Reggolatore LDO ON Semiconductor NCP163BMX180TBG da 250 mA / 1.8 V (probabilemente)

    • Regolatore LDO Texas Instruments TLV70733P da 200 mA / 3.3 V

    • Regolatore LDO Texas Instruments TPS7A201825 da 200 mA / 1.825 V

  9. Identificazione chip MacBook Pro 14" 2021: passo 9, immagine 1 di 1
    • Identificazione IC, parte 5:

    • Ricetrasmettitore di traduzione Nexperia 74AVC4T774 a 4-Bit

    • Ricetrasmettitore di traduzione Nexperia 74AUP1T45

    • Traduttore di livello di voltaggio Texas Instruments LSF0102 a 2 canali

    • Traduttore di livello di voltaggio singolo Nexperia LSF0101

    • Traduttore/ricetrasmettitore di livello del voltaggio dual-bit Nexperia 74AVC2T45

    • Traduttore di livello del voltaggio singolo Texas Instruments SN74AUP1T34

    • Ricetrasmettitore bus singolo Texas Instruments SN74AXC1T45

  10. Identificazione chip MacBook Pro 14" 2021: passo 10, immagine 1 di 1
  11. Identificazione chip MacBook Pro 14" 2021: passo 11, immagine 1 di 1
    • Identificazione IC, sensori:

    • Accelerometro/giroscopio MEMS Bosch Sensortec BMI282 a sei assi

  12. Identificazione chip MacBook Pro 14" 2021, Touchpad: passo 12, immagine 1 di 2 Identificazione chip MacBook Pro 14" 2021, Touchpad: passo 12, immagine 2 di 2
    • Identificazione IC:

    • Microcontroller con flash da 1 MB STMicroelectronics STM32L4P5QG a 32-Bit, ARM Cortex-M4

    • Controller touchpad Broadcom BCM5976C1

    • Convertitore A/D Maxim Integrated MAX11390A (probabilmente)

    • Regolatore di corrente ponte H Monolithic Power Systems MP6519 da 5A

    • Monitor della tensione di alimentazione Texas Instruments TPS3831G18 da 1.67V

    • Interruttore di carico Texas Instruments TPS22915

  13. Identificazione chip MacBook Pro 14" 2021: passo 13, immagine 1 di 1
    • Identificazione IC, sensori:

    • Accelerometro Bosch Sensortec BMA282 a 3 assi

    • Sensore di temperatura Texas Instruments TMP461

Un ringraziamento speciale a questi traduttori:

en it

88%

Questi traduttori ci stanno aiutando ad aggiustare il mondo! Vuoi partecipare?
Inizia a tradurre ›

9 Commenti

Why so many LDO regulators? Aren't they very inefficient?

allanxp4 - Replica

In practise, the efficiency of an LDO regulator is dependent on how much voltage it is dropping. While operating, an LDO is effectively a resistor that varies in real-time to ensure its output voltage stays stable despite changes in load current.

Power = I (current) x V (voltage)

Since an LDO is a resistive element, yes, it burns off energy as heat in this process. So an LDO dropping 18V to 5V could be very inefficient, more so when driving a higher current load as shown by the formula above. However, if an LDO is used to generate a 3.3V rail from a 5V rail, it is dropping just 1.7V, resulting in less power dissipation for the same load current.

You’re right, using an LDO for a large voltage drop is not good electrical design. But LDOs have excellent noise rejection performance, meaning they can take a noisy rail from a switching buck/boost converter with lots of transient or high-draw components on it, and create a much cleaner rail for lower-current, more sensitive devices. This is what I expect Apple’s doing.

iEvan -

LDOs drop the difference in voltage as heat, yes - hence the voltage difference between input and output determines the efficiency (eg a 3.0v LDO fed by 6.0v is 50% efficient).

In many cases where LDOs are used in designs the amount of lost power is negligible as the current being drawn is so small - simply not worth using a switcher for that rail. Also, LDOs typically have cleaner output so often an LDO is used to isolate an analog subsystem from noise on the main (digital) system rails.

Hugo -

+ some designs will have both a switcher and an LDO for the same power rail and switch to the LDO when the current is very low. Switchers get inefficient at low currents, so having both can improve efficiency.

Dan K -

Will you have MacBook Pro 16" 2021(Apple M1 MAX inside) Chip ID?

JJ Wu - Replica

Aggiungi Commento

Visualizza Statistiche:

Ultime 24 Ore: 36

Ultimi 7 Giorni: 210

Ultimi 30 Giorni: 1,508

Tutti i Tempi: 28,796